深圳碳化硅衬底半绝缘

时间:2021年02月08日 来源:

就SiC单晶生长来讲,美国Cree公司由于其研究**,主宰着全球SiC市场,几乎85%以上的SiC衬底由Cree公司提供。此外,俄罗斯、日本和欧盟(以瑞典和德国为首)的一些公司和科研机构也在生产SiC衬底和外延片,并且已经实现商品化。在过去的几年中,SiC晶片的质量和尺寸稳步提高,1998年秋,2英寸直径的4H-SiC晶片已经在投入市场。1999年直径增大到3英寸,微管(micropipe)密度下降到10/cm2左右,这些进展使得超过毫米尺寸的器件制造成为可能。从2005年下半年,微管密度小于l/cm2的3英寸6H和4H-SiC晶片成为商用SiC材料的主流产品。2007年5月23日,Cree公司宣布在SiC技术开发上又出现了一座新的里程碑一英寸(100 mm)零微管(ZMP)n型SiC衬底。SiC的热稳定性比较高。在常压下不会熔化。深圳碳化硅衬底半绝缘

在半导体材料的发展历史上,通常将硅(Si)、锗(Ge)称作第1代半导体。将砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等为**的合金半导体称作第2代半导体。在其之后发展起来的宽带隙半导体,碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)及金刚石等称为第3代半导体。SiC作为第3代半导体的杰出**之一,相比前2代半导体材料,具有宽带隙、高热导率高、较大的电子饱和漂移速率、高化学稳定性、高击穿电场高等诸多优点,在高温、高频、大功率器件的制作上获得广泛应用。SiC晶体有着很多不同的多型体,不同多型体的禁带宽度在2.3~3.3eV之间,因而,SiC也被用于制作蓝、绿和紫外光的发光、光探测器件,太阳能电池,以及智能传感器件等。另外,SiC能够氧化形成自然绝缘的二氧化硅(SiO2)层,同时也具有制造各种以金属-氧化物-半导体(MOS)为基础的器件的巨大潜能。表1给出了不同多型体SiC和其他半导体材料相比的主要物理性质。广州碳化硅衬底导电采用碳化硅作衬底的LED器件亮度更高、能耗更低、寿命更长、单位芯片面积更小。

在半导体行业的发展进程中,人们通常把Si和Ge元素半导体称为***代电子材料,把GaAs、InP、InAs等化合物半导体称为第二代半导体材料,而把Ⅲ族氮化物(主要包括GaN、相关化合物InN、AIN及其合金)、SiC、InSe、金刚石等宽带隙的化合物半导体称为第三代半导体材料。

碳化硅晶体(sic)结构具有同质多型的特点,其基本结构是Si-C四面体结构。它是由四个Si原子形成的四面体包围一个碳原子组成,按相同的方式一个Si原子也被四个碳原子的四面体包围,属于密堆积结构。

SiC材料具有良好的电学特性和力学特性,是一种非常理想的可适应诸多恶劣环境的半导体材料。它禁带宽度较大,具有热传导率高、耐高温、抗腐蚀、化学稳定性高等特点,以其作为器件结构材料,可以得到耐高温、耐高压和抗腐蚀的SiC-MEMS器件,具有广阔的市场和应用前景。同时SiC陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性。因此,是当前**有前途的结构陶瓷之一,并且已在许多高技术领域(如空间技术、核物理等)及基础产业(如石油化工、机械、车辆、造船等)得到应用,用作精密轴承、密封件、气轮机转子、喷嘴、热交换器部件及原子核反应堆材料等。如利用多层多晶碳化硅表面微机械工艺制作的微型电动机,可以在490℃以上的高温环境下稳定工作。但是SiC体单晶须在高温下生长,掺杂难于控制,晶体中存在缺点,特别是微管道缺点无法消除,而且SiC体单晶非常昂贵,因此发展低温制备SiC薄膜技术对于SiC器件的实际应用有重大意义。目前商用碳化硅外延设备生长速率一般为每小时10μm,且不能持续生长。

半导体材料作为现代信息和新能源技术的基础受到人们的***关注。它的发展和应用带给人们福音,尤其是在通信、高速计算、大容量信息处理、可再生清洁能源、空间防御、电子对抗以及武器装备的微型化、智能化等等这些对国民经济和**至关重要的领域出现了巨大的进步。作为第3代宽带隙半导体材料的**,碳化硅(SiC)单晶材料具有禁带宽度大(约是Si的3倍)、热导率高(约是Si的3.3倍)、电子饱和迁移速率高(约是Si的2.5倍)和击穿电场高(约是Si的10倍)等性质。与Si相比,SiC的禁带宽度为其2-3倍,同时具有其4.4倍的热导率,8倍的临界击穿电场。广州碳化硅衬底导电

碳化硅在大功率LED方面具有非常大的优势。深圳碳化硅衬底半绝缘

为了制造碳化硅半导体器件,需要在碳化硅晶片表面生长1层或数层碳化硅薄膜。这些薄膜具有不同的n、p导电类型,目前主流的方法是通过化学气相沉积方法进行同质外延生长。        碳化硅外延生长方案中,衬底起很大的支配作用,早期碳化硅是在无偏角衬底上外延生长的,即从晶锭上切割下来的晶片其外延表面法线与晶轴(c轴)夹角θ=0°,如碳化硅晶片的Si(0001)或C(000)面,外延表面几乎没有台阶,外延生长期望能够由理想的二维成核生长模型控制。然而实际生长发现,外延结果远未如此理想。由于碳化硅是一种多型体材料,外延层中容易产生多型体夹杂,比如4H-SiC外延层中存在3C-SiC夹杂,使外延层“不纯”,变成一种混合相结构,极大地影响碳化硅器件的性能,甚至不能用这样的外延材料制备器件。另外,这样的外延层宏观外延缺点密度很大,不能用常规的半导体工艺制备器件,即薄膜质量难于达到晶圆级外延水平。深圳碳化硅衬底半绝缘

信息来源于互联网 本站不为信息真实性负责