河南量子语音关键事件检测设计
通信接口用于上述电子设备与其他设备之间的通信。存储器可以包括随机存取存储器(randomaccessmemory,ram),也可以包括非易失性存储器(non-volatilememory,nvm),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。上述的处理器可以是通用处理器,包括处理器(centralprocessingunit,cpu)、网络处理器(networkprocessor,np)等;还可以是数字信号处理器(digitalsignalprocessing,dsp)、集成电路(applicationspecificintegratedcircuit,asic)、现场可编程门阵列(field-programmablegatearray,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,该计算机程序被处理器执行时实现上述本发明实施例提供的一种事件检测方法中的任一方法步骤。需要说明的是,在本文中,诸如和第二等之类的关系术语用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含。语音关键事件检测算法通常基于机器学习和深度学习技术,通过训练模型来识别不同的声音模式。河南量子语音关键事件检测设计
在清单中,LayerUI的installUI()方法调用setLayerEventMask()检测鼠标移动事件,它又调用eventDispatched()方法返回结果。这个方法首先调用()方法确定鼠标移动事件相对于层的坐标位置。接下来这个方法通过检查它的坐标是否落在围绕UI中心的一个矩形区域内,检测鼠标指针是否移到印记文本上方,如果坐标刚好落在这个矩形区域内,印记文本的颜色就变为淡红色,除此以外,印记文本的颜色就恢复为蓝色。显示了鼠标移到印记文本上方前后的颜色变化。鼠标指针移到文本上方时,重新绘制文本颜色给用户一个不刺眼的提示小结JLayer对自定义绘制和事件检测的支持让你可以改进UI的各个组件,你可以将这个Swing组件和半透明及任意形状窗口特性结合起来使用,让你可以设计出更有趣的用户界面。深圳语音关键事件检测供应语音关键事件检测有什么注意事项?欢迎来电咨询!
在本申请的示例性实施例中,在通过双向lstm网络获得语句的向量化语义表示w1之前,所述方法还可以包括:将语句中的m个字符随机初始化为一个维度为[m,n]的n维向量d,其中,对于从0到m-1的索引id,每个id对应一个不同的字符;对于长度为s的语句,该语句中每一个字符能够在向量d中找到对应的id,从而获得维度为[s,d]的向量。在本申请的示例性实施例中,通过双向lstm网络获得语句的向量化语义表示w1可以包括:将维度为[s,d]的向量输入预设的双向lstm神经网络,将所述双向lstm神经网络的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,通过bert模型获得语句的向量化语义表示w1可以包括:将语句直接输入所述bert模型,将所述bert模型的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,所述向量化语义表示w1的维度可以为[s,d1];其中,当通过双向lstm网络获得语句的向量化语义表示w1时,d1为2*lstm隐层节点数;当通过bert模型获得语句的向量化语义表示w1时,d1=768。在本申请的示例性实施例中,所述方法还可以包括:预先将触发词的类型划分为x种,将事件主体的类型划分为y种,其中,x、y均为正整数;在获得语句的向量化语义表示w1之前。
当目标人物的沉浮频率偏离目标频率值时,也即目标人物沉浮频率过高或沉浮频率过低,目标人物均存在溺水的可能性。在具体实施中,游泳者在正常游泳时,泳姿可能会发生变化,但是泳姿通常是正常的,例如,游泳者在某一时间段进行蛙泳,之后一段时间进行仰泳。若游泳者出现溺水时,其对应的泳姿会出现异常。因此,在本实用新型实施例中,当目标人物的沉浮频率偏离预设的目标频率值,且目标人物的泳姿信息异常时,控制器12可以判定目标人物发生溺水。在具体实施中,若在目标人物所处的理论位置范围内没有检测到目标人物,且没有检测到目标人物的时间超过预设时长时,目标人物也可能会发生溺水。在本实用新型实施例中,当目标人物的沉浮频率偏离预设的目标频率值,且在预设时长内在所述理论位置范围内没有检测到目标人物时,控制器12也可以判定目标人物发生溺水。在实际应用中,预设时长可以根据具体的应用场景进行设定。例如,预设时长设置为15s。又如,预设时长设置为20s。需要说明的是,在本实用新型实施例中,控制器12执行的算法运算操作均可以采用现有的公知技术所实现。在具体实施中,在判定目标人物溺水之后,控制器12可以向预先关联的告警装置13输出告警指令。语音关键事件检测的运用多吗?
本申请提供了一种事件检测方法,如图1所示,所述方法可以包括s101-s105:s101、获得语句的向量化语义表示w1。在本申请的示例性实施例中,在获得语句的向量化语义表示w1之前,可以首先对要进行事件抽取的数据进行预处理。在本申请的示例性实施例中,所述方法还可以包括:预先将触发词的类型划分为x种,将事件主体的类型划分为y种,其中,x、y均为正整数;在获得语句的向量化语义表示w1之前,根据设定的span宽度,对语句进行span划分,以将语句划分为多个span,并对每个span进行标记;其中,每个标记表示x+y+1种类型中的任意一种,1表示所述触发词的类型和所述事件主体的类型以外的其他类型。在本申请的示例性实施例中,假设触发词的类型(可以称为事件类型)数为n_event=10,即x=10,事件主体的类型(可以称为实体类型)数为n_entity=20,即y=20,则一共有10+20=30种类型。在本申请的示例性实施例中,可以首先对数据进行span的划分。以单个句子为例,假如设定span的大宽度max_span_width=8,则可以得到多个span,需要对每个span进行标记,即确定每个span是否是触发词、事件主体还是其他类型(other类型)。在进行分类时,一共有30种类型,加上other类型一共31种。语音关键事件检测技术可以帮助我们更好地理解人类的语言和交流方式。海南数字语音关键事件检测内容
智能语音质检都有什么功能?河南量子语音关键事件检测设计
将w2与w4进行横向拼接得到终的语义表示w3,w3的维度可以为[n,2*d1]。在本申请的示例性实施例中,自注意力机制计算具体可以包括:将w2分别进行多次(如三次)线性变换得到w21、w22、w23,然后可以执行矩阵相乘运算得到w4=(w22*w23t)*w21,w3=w2||w4。s105、对所述新的语义表示w3进行span分类,确定每个span是否为一个事件的触发词或事件主体。在本申请的示例性实施例中,所述对所述新的语义表示w3进行span分类可以包括:使用两层全连接神经网络和softmax层对每个span进行分类;其中,在训练阶段,将分类结果与带有标记的span进行误差计算和反向传播。在本申请的示例性实施例中,得到步骤s104的span的表示w3后,可以使用两层全连接神经网络和softmax层对span进行分类。在本申请的示例性实施例中,如果如步骤s101中所述,预先对数据进行了预处理,即预先对数据进行了span分类和标记,则在训练阶段,可以将分类结果与预处理过程所得的带有标记的span进行误差计算和反向传播,并进行参数更新操作完成训练过程。在本申请的示例性实施例中,在预测阶段,根据分类的结果即可得到每个span的类型。softmax的输出是每个span所属对应类型(预处理过程获得的带类型标记的span)的概率。河南量子语音关键事件检测设计
上一篇: 云南光纤数据语音关键事件检测服务标准
下一篇: 江苏数字语音关键事件检测介绍