四川谷歌语音识别

时间:2023年11月11日 来源:

    特别是在Encoder层,将传统的RNN完全用Attention替代,从而在机器翻译任务上取得了更优的结果,引起了极大关注。随后,研究人员把Transformer应用到端到端语音识别系统中,也取得了非常明显的改进效果。另外,生成式对抗网络(GenerativeAdversarialNetwork,GAN)是近年来无监督学习方面具前景的一种新颖的深度学习模型,"GenerativeAdversarialNets",文中提出了一个通过对抗过程估计生成模型框架的全新方法。通过对抗学习,GAN可用于提升语音识别的噪声鲁棒性。GAN网络在无监督学习方面展现出了较大的研究潜质和较好的应用前景。从一个更高的角度来看待语音识别的研究历程,从HMM到GMM,到DNN,再到CTC和Attention,这个演进过程的主线是如何利用一个网络模型实现对声学模型层面更准的刻画。换言之,就是不断尝试更好的建模方式以取代基于统计的建模方式。在2010年以前,语音识别行业水平普遍还停留在80%的准确率以下。机器学习相关模型算法的应用和计算机性能的增强,带来了语音识别准确率的大幅提升。到2015年,识别准确率就达到了90%以上。谷歌公司在2013年时,识别准确率还只有77%,然而到2017年5月时,基于谷歌深度学习的英语语音识别错误率已经降低到。语料的标注需要长期的积累和沉淀,大规模语料资源的积累需要被提高到战略高度。四川谷歌语音识别

四川谷歌语音识别,语音识别

    没有任何一个公司可以全线打造所有的产品。语音识别的产业趋势当语音产业需求四处开花的同时,行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。内蒙古语音识别模块语音识别另外两个技术部分:语言模型和解码器,目前来看并没有太大的技术变化。

四川谷歌语音识别,语音识别

    行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、酒店、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品。

  

    比如兼容性方面新兴公司做的会更加彻底,这种兼容性对于一套产品同时覆盖国内国外市场是相当有利的。类比过去的Android,语音交互的平台提供商们其实面临更大的挑战,发展过程可能会更加的曲折。过去经常被提到的操作系统的概念在智能语音交互背景下事实上正被赋予新的内涵,它日益被分成两个不同但必须紧密结合的部分。过去的Linux以及各种变种承担的是功能型操作系统的角色,而以Alexa为的新型系统则承担的则是智能型系统的角色。前者完成完整的硬件和资源的抽象和管理,后者则让这些硬件以及资源得到具体的应用,两者相结合才能输出终用户可感知的体验。功能型操作系统和智能型操作系统注定是一种一对多的关系,不同的AIoT硬件产品在传感器(深度摄像头、雷达等)、显示器上(有屏、无屏、小屏、大屏等)具有巨大差异,这会导致功能型系统的持续分化(可以和Linux的分化相对应)。这反过来也就意味着一套智能型系统,必须同时解决与功能型系统的适配以及对不同后端内容以及场景进行支撑的双重责任。这两边在操作上,属性具有巨大差异。解决前者需要参与到传统的产品生产制造链条中去,而解决后者则更像应用商店的开发者。这里面蕴含着巨大的挑战和机遇。

   大数据与深度神经网络时代的到来,语音识别技术取得了突飞猛进的进步。

四川谷歌语音识别,语音识别

    训练通常来讲都是离线完成的,将海量的未知语音通过话筒变成信号之后加在识别系统的输入端,经过处理后再根据语音特点建立模型,对输入的信号进行分析,并提取信号中的特征,在此基础上建立语音识别所需的模板。识别则通常是在线完成的,对用户实时语音进行自动识别。这个过程又基本可以分为“前端”和“后端”两个模块。前端主要的作用就是进行端点检测、降噪、特征提取等。后端的主要作用是利用训练好的“声音模型”和“语音模型”对用户的语音特征向量进行统计模式识别,得到其中包含的文字信息。语音识别技术的应用语音识别技术有着应用领域和市场前景。在语音输入控制系统中,它使得人们可以甩掉键盘,通过识别语音中的要求、请求、命令或询问来作出正确的响应,这样既可以克服人工键盘输入速度慢,极易出差错的缺点,又有利于缩短系统的反应时间,使人机交流变得简便易行,比如用于声控语音拨号系统、声控智能玩具、智能家电等领域。在智能对话查询系统中,人们通过语音命令,可以方便地从远端的数据库系统中查询与提取有关信息,享受自然、友好的数据库检索服务,例如信息网络查询、医疗服务、银行服务等。语音识别技术还可以应用于自动口语翻译。在安静环境、标准口音、常见词汇场景下的语音识别率已经超过 95%。四川谷歌语音识别

语音识别还无法做到无限制领域、无限制人群的应用,但是至少从应用实践中我们看到了一些希望。四川谷歌语音识别

    MarkGales和SteveYoung在2007年对HMM在语音识别中的应用做了详细阐述。随着统计模型的成功应用,HMM开始了对语音识别数十年的统治,直到现今仍被看作是领域内的主流技术。在DARPA的语音研究计划的资助下,又诞生了一批的语音识别系统,其中包括李开复()在卡耐基梅隆大学攻读博士学位时开发的SPHINX系统。该系统也是基于统计模型的非特定说话人连续语音识别系统,其采用了如下技术:①用HMM对语音状态的转移概率建模;②用高斯混合模型(GaussianMixtureModel,GMM)对语音状态的观察值概率建模。这种把上述二者相结合的方法,称为高斯混合模型-隐马尔可夫模型(GaussianMixtureModel-HiddenMarkovModel,GMM-HMM)[9]。在深度学习热潮出现之前,GMM-HMM一直是语音识别主流的技术。值得注意的是,在20世纪80年代末,随着分布式知识表达和反向传播算法(Backpropagation,BP)的提出,解决了非线性学习问题,于是关于神经网络的研究兴起,人工神经网络(ArtificialNeuralNetwork,ANN)被应用到语音领域并且掀起了一定的热潮。这是具有里程碑意义的事件。它为若干年后深度学习在语音识别中的崛起奠定了一定的基础。但是由于人工神经网络其自身的缺陷还未得到完全解决。四川谷歌语音识别

信息来源于互联网 本站不为信息真实性负责