新疆语音服务

时间:2023年05月08日 来源:

    确定针对设备用户信息的设备列表。示例性地,可以得到针对酒店a的设备列表。由此,该设备列表能够被用来对特定用户所对应的某个特定区域内的物联网受控设备进行语音控制。在本实施例的一个示例中,物联网主控设备可以将设备用户信息、设备区域配置信息和相应的各个物联网受控设备信息发送至语音服务端,以在语音服务端构建至少一个设备列表。在本实施例的另一示例中,物联网主控设备可以将设备用户信息、设备区域配置信息和相应的各个物联网受控设备信息发送至物联网运营端,以在物联网运营端构建至少一个设备列表。根据本发明实施例的物联网设备语音控制方法的一示例的流程。在步骤510中,用户配置受控区域。示例性地,用户可以在带屏音箱或app上配置受控的区域信息,如:“客厅”、“卧室”等。在步骤520中,说话人可以向音箱发出语音指令。在步骤530中,音箱可以向智能语音平台上传用户音频,同时附带上用户之前设置好的区域信息。在步骤540中,智能语音平台音频请求后,向iot智能设备平台发送获取特定用户的所有可控设备列表的请求,并附带用户信息(token)。在步骤550中,智能语音平台根据之前语音指令对应的区域信息,对获取的设备列表进行过滤。GStreamer 会先解压缩音频,然后再将音频作为原始 PCM 通过网络发送到语音服务。新疆语音服务

    所以在正式使用声学模型进行语音识别之前,我们必须对音频信号进行预处理和特征提取。初始的预处理工作就是静音切除,也叫语音检测(VoiceActivityDetection,VAD)或者语音边界检测。目的是从音频信号流里识别和消除长时间的静音片段,在截取出来的有效片段上进行后续处理会很大程度上降低静音片段带来的干扰。除此之外,还有许多其他的音频预处理技术,这里不展开多说。其次就是特征提取工作,音频信号中通常包含着非常丰富的特征参数,不同的特征向量表征着不同的声学意义,从音频信号中选择有效的音频表征的过程就是语音特征提取。常用的语音特征包括线性预测倒谱系数(LPCC)和梅尔频率倒谱系数(MFCC),其中LPCC特征是根据声管模型建立的特征参数,是对声道响应的特征表征。而MFCC特征是基于人的听觉特征提取出来的特征参数,是对人耳听觉的特征表征。所以,在对音频信号进行特征提取时通常使用MFCC特征。MFCC主要由预加重、分帧、加窗、快速傅里叶变换(FFT)、梅尔滤波器组、离散余弦变换几部分组成,其中FFT与梅尔滤波器组是MFCC重要的部分。是变换的简单示意,通过傅里叶变换将时域切换到频域。一个完整的MFCC算法包括如下几个步骤。。1)快速变换。

   上海无限语音服务了解和理解客户在线行为的能力对于实现更好的语音自助服务至关重要。

    VR定制语音服务已经开始推行了,那么这项技术中*关键的技术是什么呢?这里和大家分享一下。定制语音服务的另一个组成技术是LUIS,语言理解智能服务LanguageUnderstandingIntelligentService。微软称LUIS是“意图引擎”,即能够让电脑理解语言背后的真正意思。例如,目前的语音控制是赋予某个特定的词语或者句子一个程序,来触发一个行为。“寻找咖啡”或者“我要喝咖啡”的句子,会让手机显示附近的咖啡馆。有了LUIS,用户大可以直接说“找咖啡”、“我需要咖啡”,“我得来点刺激”或者“我眼睛都睁不开了”,来实现相同的功能。有了LUIS,电脑能更容易识别用户的语音背后的真实意图,这极大拓宽了语音控制的使用场景,同时也缓解了开发者这边的工作量。

所谓语音识别,就是将一段语音信号转换成相对应的文本信息,系统主要包含特征提取、声学模型,语言模型以及字典与解码四大部分,其中为了更有效地提取特征往往还需要对所采集到的声音信号进行滤波、分帧等预处理工作,把要分析的信号从原始信号中提取出来;之后,特征提取工作将声音信号从时域转换到频域,为声学模型提供合适的特征向量;声学模型中再根据声学特性计算每一个特征向量在声学特征上的得分;而语言模型则根据语言学相关的理论,计算该声音信号对应可能词组序列的概率;根据已有的字典,对词组序列进行解码,得到可能的文本表示。通过语音服务控制请求中的目标设备区域配置信息从该设备列表中确定对应区域的受控设备信息。

    以下规范化规则自动应用到听录:使用小写字母。删除除字词中撇号外的所有标点。将数字扩展为字词/口语形式,例如美元金额。中国大陆普通话(zh-CN)中国大陆普通话音频的人为标记的听录必须使用字节顺序标记进行UTF-8编码。避免使用半角标点字符。在文字处理程序中准备数据或从网页中擦除数据时,可能会无意中包括这些字符。如果存在这些字符,请务必将其更新为相应的全角替代字符。中国大陆普通话的文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本,但我们建议你在准备人为标记的听录数据时遵循以下准则:将缩写写成字词。用口语形式写数字字符串。以下规范化规则自动应用到听录:删除所有标点,将数字扩展为口语形式,将全角字母转换为半角字母,对所有英语单词使用大写字母。德语(de-DE)和其他语言德语(以及其他既非英语也非中国大陆普通话的语言)音频的人为标记的听录必须使用字节顺序标记进行UTF-8编码。应该为每个音频文件提供一个人为标记的听录。德语文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本。

     高清语音服务(WB)则可支持宽带音频信号,音频带宽的频率达到7kHz。陕西新一代语音服务

说话人识别语音服务提供一些算法,可使用语音生物测量,根据说话人独特的语音特征来验证和识别说话人。新疆语音服务

    这些传统的声学模型在语音识别领域仍然有着一席之地。所以,作为传统声学模型的,我们就简单介绍下GMM和HMM模型。所谓高斯混合模型(GaussianMixtureModel,GMM),就是用混合的高斯随机变量的分布来拟合训练数据(音频特征)时形成的模型。原始的音频数据经过短时傅里叶变换或者取倒谱后会变成特征序列,在忽略时序信息的条件下,这种序列非常适用于使用GMM进行建模。混合高斯分布的图像。高斯混合分布如果一个连续随机变量服从混合高斯分布,其概率密度函数形式为:GMM训练通常采用EM算法来进行迭代优化,以求取GMM中的加权系数及各个高斯函数的均值与方差等参数。GMM作为一种基于傅里叶频谱语音特征的统计模型,在传统语音识别系统的声学模型中发挥了重要的作用。其劣势在于不能考虑语音顺序信息,高斯混合分布也难以拟合非线性或近似非线性的数据特征。所以,当状态这个概念引入到声学模型的时候,就有了一种新的声学模型——隐马尔可夫模型(HiddenMarkovmodel,HMM)。在随机过程领域,马尔可夫过程和马尔可夫链向来有着一席之地。当一个马尔可夫过程含有隐含未知参数时,这样的模型就称之为隐马尔可夫模型。HMM的概念是状态。状态本身作为一个离散随机变量。

    新疆语音服务

深圳鱼亮科技有限公司专注技术创新和产品研发,发展规模团队不断壮大。一批专业的技术团队,是实现企业战略目标的基础,是企业持续发展的动力。公司业务范围主要包括:智能家居,语音识别算法,机器人交互系统,降噪等。公司奉行顾客至上、质量为本的经营宗旨,深受客户好评。一直以来公司坚持以客户为中心、智能家居,语音识别算法,机器人交互系统,降噪市场为导向,重信誉,保质量,想客户之所想,急用户之所急,全力以赴满足客户的一切需要。

信息来源于互联网 本站不为信息真实性负责