湖北无限声学回声设计

时间:2023年02月03日 来源:

    黑色这条线是标准NLMS算法的回声抑制比。我们可以看到,NLMS算法在收敛之后,回声抑制比只能到10个分贝左右,相对比较低。而双耦合算法在收敛之后,可以达到25个分贝以上,也就是说它比NLMS算法多15个分贝,这个优势是很明显的。接下来我们再看第二个示例,针对弱非线性失真的情况,左边是语谱,右边是回声抑制比。我们评估单讲性能的主要指标是回声抑制比和收敛速度。首先看一下NLMS算法,它在收敛之后,大概可以抑制22~25个分贝。这个算法的收敛速度很慢,大概经过100多帧之后才会进入到相对收敛的状态。再来看一下双耦合算法,在稳定之后,可以抑制35~40个分贝,比NLMS算法大概提升15~20个分贝的回声抑制比。同时它还有一个很明显的优势:收敛速度很快,几乎是回声到了之后,他瞬间就进入到收敛状态。接下来这个是针对不同手机机型的回声抑制比的比较。红色是双耦合算法,蓝色是NLMS算法,从这组数据里面,我们可以看到双耦合算法比NLMS算法普遍提升了大概10个分贝以上的回声抑制比,具有比较大的优势。再进入双讲测试场景。我首先介绍一下测试的示例,这组数据是一个视频会议的数据,左边这个是原始的麦克信号语谱,右边这个是回声参考信号语谱。

     非线性声学回声系统建模。湖北无限声学回声设计

    为什么又这么冷呢?我能想到的一个答案是它太难了,它非常有挑战性。下面就来看一下它的技术难点。5非线性声学回声消除的技术难点,我从6个不同的维度比较了线性的和非线性这两种回声消除问题。个维度,系统传递函数。在线性系统里面,我们认为系统传递函数是一个缓慢时变的系统,我们可以通过自适应滤波的方式去逼近这个传递函数,来有效抑制回声。而在非线性系统里面,系统传递函数通常是快变、突变的,我们如果用线性的方法去逼近的话,会出现滤波器的更新速度,跟不上系统传递函数变化的速度,就会导致声学回声消除不理想。第二个维度是优化模型,在线性里面我们是有一套非常完备的线性优化模型,从目标函数的构建到系统优化问题的求解,整个脉络是很清晰的。而在非线性的系统里面,目前是缺少一种有效的模型来对它进行支撑的。接下来的四个维度对应4个问题,它们是线性回声消除领域普遍存在的4个难点问题,这些问题在非线性领域也同样存在。比如强混响问题,我们如果在一个小型会议室里开视频会议,那么声音会经过多次墙壁反射,带来很强的混响,混响的拖尾时间会很长。如果想抑制这样的强混响回声,就需要把线性滤波器的长度加长。

    量子声学回声介绍非线性的声学回声消除问题是一个困扰了行业很多年的技术难题。

    直达声总是较早到达人耳,这是因为直达声比反射声的声程短。除了直达声以外,反射的声音形成了混响声,使室内声压级增加。15.比较大声压级厅内空场稳态时的比较大声压级。16.传输频率特性厅内各测点处稳态声压级的平均值相对于扩声系统传声器处声压或扩声设备输入端电压的幅频响应。17.传声增益扩声系统达比较高可用增益时,厅内各测点处稳态声压级平均值与扩声系统传声器处声压级的差值。18.比较高可用增益maximumavailablegain歌舞厅扩声系统在声反馈自激临界状态的增益减去6dB时的增益。扩声系统中使用单指向性传声器、频率均衡器能提高扩声系统的传声增益。19.声场不均匀度有扩声时,厅内各测点处得到的稳态声压级的极大值和极小值的差值,以分贝表示。20.总噪声级扩声系统达到比较高可用增益,但无有用声信号输入时,厅内各测点处噪声声压级的平均值。21.声缺陷主要指回声、颤动回声、声聚焦、声染色及声阴影等声学现象。22.声缺陷的消除回声、颤动回声、声聚焦、声染色一般容易发生在大厅中,解决的方法是应用几何声学的有关规律予以消除,而声阴影则多发生于小室,应从波动声学的角度加以考虑,消除音质缺陷。

    

    而在模拟音频大举转向数字音频、网络音频的,网络信号的延迟也为音频领域赋予了新的现象,尤其应用在远程会议这样的音频传输系统当中,它能将一次次回授剥离成一次次听似回声的现象,这就是网络音频回声。通常由A地发出的声源A在几乎不经过延迟处理的本地系统中,通过A地音箱扩声;而其经过网络终端编码送向远端时,除了考虑A地的上传时间X,还得考虑B地的下载时间Y。在这样一个架构在Internet网络传输环境中的声音,其到达B地扩声音箱出来的信号则是A+X+Y。经B地本地话筒拾取后的该信号,再由B地的上传网速(时间)Z、A地的下载时间W传送回A地扩声音箱,其表现出的信号则会出现一次A信号,及一次赋予了(X+Y+Z+W)时间的A信号。假设A地—B地传输时间总和为200ms,B地—A地传输时间总和为200ms,则信号的一去一回,体现在A扩声音箱中至少会存在A和A+400ms的信号,若反馈信号电平足够强,则再被话筒拾取,这将不止产生一次的回声,而是多次规律的回声现象。AEC即AcousticEchoCancellation(声音回声消除)技术简称。该技术的出现旨在消除这种因远程网络会议所带来的回授现象,以遏制次回声产生所需的必要条件来遏制多次回声的出现。

  深入浅出 WebRTC AEC(声学回声消除)。

可以准确快速的进行底噪测试。下图TWS耳机中的左耳,在喇叭播放空声源时,喇叭端有略微的电流声底噪,右耳无此不良现场,通过指南测控的标准声学测试系统进行左右耳TWS声学测试,可以在底噪测试步骤中检测到,有底噪异常的左耳的一些频段能量值偏高,无底噪问题的右耳的表现就“平顺”很多。再结合与更多正常品的对比和设定合理的limits,可以快速准确的检查出耳机在各种状态下的底噪不良。耳机回声回声来自于非预期的泄露,一般分为电学回声和声学回声。前者一般由于麦克风和扬声器线路布局不合理的电路耦合造成,后者则是由于麦克风和扬声器的声学泄露耦合而成。对于回声不良的耳机来说,在通话时,耳机喇叭播放的声音信号通过麦克风又传回电话另一头的手机,从而让讲话者听到自己的声音。对于耳机来讲,主要是声学回声,表现为收发环路的隔离度不好,其根本原因就是耳机在装配时麦克风与喇叭的密封隔离没做好,导致通话时回声出现的不良体验。图中的耳机,在通话时,人耳会略微的感受到回声,也就是佩戴人讲话的声音又传递到了耳机本身的喇叭后播放出来,也有会在通话对方的手机端出现回声现像影响双方的通话质量。指南测控的标准声学测试系统,根据回声传输路径。先对非线性声学回声的特性进行分析。湖北无限声学回声设计

AEC声学回声,电话的扬声器的声音。湖北无限声学回声设计

服务型商家为应对市场竞争并提升未来的竞争力,对网络维护加入将不断增加,以支撑持续稳定增长的业务需求。通信业市场需求和加入规模的增长,将为通信技术服务行业开拓广阔的市场空间。智能家居,语音识别算法,机器人交互系统,降噪业是一个以技术为导向的行业,新型通信技术的开发及应用对行业的发展起着巨大的推动作用。随着3G技术的逐渐成熟、4G技术的试点推广与商用化和5逐步试点,通信运营商进行了相应的大规模基础设施完善。在这样的背景下,处于通信产业链中间环节的智能家居,语音识别算法,机器人交互系统,降噪行业将面临更大的市场需求,通信技术服务行业将持续飞速发展。通信产品是当今基础的民生服务行业之一,并且随着工信部2015年信息通信业“十三五”规划的出台,市场对于通信产品热度有增无减。湖北无限声学回声设计

深圳鱼亮科技有限公司是一家集生产科研、加工、销售为一体的****,公司成立于2017-11-03,位于龙华街道清华社区建设东路青年创业园B栋3层12号。公司诚实守信,真诚为客户提供服务。公司主要经营智能家居,语音识别算法,机器人交互系统,降噪,公司与智能家居,语音识别算法,机器人交互系统,降噪行业内多家研究中心、机构保持合作关系,共同交流、探讨技术更新。通过科学管理、产品研发来提高公司竞争力。公司秉承以人为本,科技创新,市场先导,和谐共赢的理念,建立一支由智能家居,语音识别算法,机器人交互系统,降噪**组成的顾问团队,由经验丰富的技术人员组成的研发和应用团队。深圳鱼亮科技有限公司依托多年来完善的服务经验、良好的服务队伍、完善的服务网络和强大的合作伙伴,目前已经得到通信产品行业内客户认可和支持,并赢得长期合作伙伴的信赖。

信息来源于互联网 本站不为信息真实性负责