安徽识别声学回声识别

时间:2022年12月20日 来源:

WebRTCAEC算法中开辟了可存储250个block大缓冲区,每个block的长度PART_LEN=64个样本点,能够保存的1s的数据,这也是理论上的大延时能够估计的范围,够用了。我们用610ms延时的数据测试(启用大延时调整需要设置delay_agnostic_enabled=1):我们还是设置默认延时为240ms,刚开始还是调整了-60个block,随后大延时调整接入之后有调整了-88个block,一共调整(60+88)*4=592ms,之后线性滤波器固定index=4,表示剩余延时剩余16ms,符合预期。③线性滤波器延时估计是固定延时调整和大延时调整之后,滤波器对当前远近端延时的直接反馈。前两者调整不当会造成延时过小甚至非因果,或延时过大超出滤波器覆盖能力,导致无法收敛的回声。因此前两者在调整的过程中需要结合滤波器的能力,确保剩余延时在滤波器能够覆盖的范围之内,即使延时小范围抖动,线性部分也能自适应调整。总结与优化方向WebRTCAEC存在的问题:(1)线性部分收敛时间较慢,固定步长的NLMS算法对线性部分回声的估计欠佳;(2)线性部分滤波器阶数默认为32阶,默认覆盖延时132ms,对移动端延时较大设备支持不是很好,大延时检测部分介入较慢。不上系统传递函数变化的速度,就会导致声学回声消除不理想。安徽识别声学回声识别

    也就是说吸声可提高音质,但对降噪能力效果不好。3.吸声系数在一定面积上被吸收的声能与射入声能之比称之为该界面的吸声系数(α)。当入射声能被完全反射时,α=0,表示无吸声作用;当入射声波完全没有被反射时,α=1,表示完全被吸收。一般材料或结构的吸声系数α=0~1,α值越大,表示吸声能越好,它是目前表征吸声性能常用的参数。4.吸声量又称等效吸声面积,等于吸声材料面积与其吸声系数的乘积。单位为平方米。5.吸声材料吸声系数大于(acousticalabsorptionmaterials)。吸声材料是多孔、疏散的材质,常用的吸声材料有玻璃棉、岩棉、聚酯纤维吸音板、羊毛毡、矿渣棉、卡普隆纤维、棉麻等植物纤维、泡沫微孔吸声砖等。雪也能吸声。6.隔声隔声是指声波在空气中传播时,一般用各种易吸收能量的物质消耗声波的能量使声能在传播途径中受到阻挡而不能直接通过的措施,这种措施称为隔声。7.隔声量声波从一空间向另一空间透射,被中间界面阻隔的声能。8.吸声降噪指采用吸声的材料吸收噪声、降低噪声强度的方法。一般利用吸声装置(吸声饰面、空间吸声体等)吸收室内的声能以降低噪声。在室内建筑厅堂和工厂降噪的声学设计中,主要是解决低频吸声降噪的问题。。

     河南语音识别声学回声处理算法非线性声学回声产生的原因。

    对麦克接收到的声学信号进行调制,而这种振动本质上是一种随机的、非线性的振动,所以它必然会带来非线性失真。3.手机声学特性调研,我们之前针对市面上主要的手机机型做过一次调研,主要调查声学特性。结果我们很惊讶地发现,市面上超过半数的手机机型,声学特性不够理想,对应这里面的“较差”和“极差”这两档。我们平时用手机开外音玩游戏,或者语音通话时,经常会出现漏回声问题和双讲剪切问题,就与手机声学特性不佳有直接联系。当然这组数据只是针对手机这种电子产品,市面上类似于手机这样的电子产品还有很多,它们应该也有类似的问题。这组数据告诉我们,非线性失真问题在我们生活中的电子产品里是一个普遍存在的问题,我相信对这个问题的研究将会是一个很有价值也很有意义的方向。4.非线性声学回声消除技术研究现状我之前在IEEE的数字图书馆里搜索了“声学回声消除”的相关文献,一共找到了3402篇,其中有会议论文,还有期刊、杂志、书等。我用同样的方法搜索了“非线声学回声消除”,结果只找到了254篇文献,不到前面文献的1/10,这意味着非线性声学回声消除技术在整个声学回声消除领域是一个相对比较冷的研究方向。既然这个方向很有价值也很有意义。

    

    也能够更清楚地看到这里面可能存在的回授现象。部分工程师在调试远程会议系统时也许遇到过啸叫,那可不一定是本地系统没调好所造成的,你会发现,关掉终端一切非常正常。为什么绝大多数的远程系统没有啸叫呢?这还得感谢您还不算非常质量的网络。我们常说,距离产生延时,而在模拟音频大举转向数字音频、网络音频的,网络信号的延迟也为音频领域赋予了新的现象,尤其应用在远程会议这样的音频传输系统当中,它能将一次次回授剥离成一次次听似回声的现象,这就是网络音频回声。通常由A地发出的声源A在几乎不经过延迟处理的本地系统中,通过A地音箱扩声;而其经过网络终端编码送向远端时,除了考虑A地的上传时间X,还得考虑B地的下载时间Y。在这样一个架构在Internet网络传输环境中的声音,其到达B地扩声音箱出来的信号则是A+X+Y。经B地本地话筒拾取后的该信号,再由B地的上传网速(时间)Z、A地的下载时间W传送回A地扩声音箱,其表现出的信号则会出现一次A信号,及一次赋予了(X+Y+Z+W)时间的A信号。假设A地—B地传输时间总和为200ms,B地—A地传输时间总和为200ms,则信号的一去一回。体现在A扩声音箱中至少会存在A和A+400ms的信号,若反馈信号电平足够强。则再被话筒拾取。

     AEC声学回声,电话的扬声器的声音。

    首先是优化准则。NLMS算法是基于小均方误差准则,而双耦合算法是基于小平均短时累计误差准则,所以他们的优化准则是不一样的。第二个就是理论的比较好解,NLMS算法具有Wiener-Hopf方程解,而双耦合算法的线性滤波器也具有Wiener-Hopf方程解,非线性滤波器具有小二乘解。第三个维度就是运算量,NLMS运算量是O(M),M是滤波器的阶数,而双耦合算法运算量后面会多一个O(N2),因为他有两个滤波器,N是非线性滤波器的阶数,这里的平方是因为小二乘需要对矩阵进行求逆运算,所以它的运算量比线性的NLMS运算量要大很多。第三个就是控制机制,NLMS算法只有一个滤波器,它的控制主要是通过调整步长来实现的,控制起来要相对简单。而双耦合算法需要对两套滤波器进行耦合控制,控制的复杂度要高很多。实验结果分析,这里我主要是分了两个实验场景比较双耦合算法和NLMS算法的性能,个是单讲测试场景,第二个就是双讲测试场景。首先看一下单讲测试场景,个示例是针对强非线性失真的情况,左边分别原信号的语谱,NLMS算法进行回声消除之后的语谱、双耦合算法的语谱。颜色越深,能量越大。右边这个的是回声抑制比,值越大越好,红色的曲线是双耦合算法的回声抑制比。

    非线性声学回声消除方面的资料非常少。安徽识别声学回声识别

我们把声学回声消除这个技术变成一张实体的插件(设备插卡)。安徽识别声学回声识别

    首先这里的A和D比较好判断,他们都属于线性时不变系统。比较难判断的是C,因为在一些比较复杂的场景下,声学回声往往会经过多个不同路径的多次反射之后到达接收端,同时会带有很强的混响,甚至在更极端情况下,喇叭与麦克风之间还会产生相对位移变化,导致回声路径也会随时间快速变化。这么多因素叠加在一起,往往会导致回声消除算法的性能急剧退化,甚至完全失效。有同学可能会问,难道这么复杂的情况,不是非线性的吗?我认为C应该是一个线性时变的声学系统,因为我们区分线性跟非线性的主要依据是叠加原理,前面提到的这些复杂场景,它们依然是满足叠加原理的,所以C是线性系统。这里还要再补充一点,细心的朋友会发现B里面有一个功率放大器,同时在C里面也有一个功率放大器,为什么经B的功率放大器放大之后,可能带来非线性失真,而C的功率放大器不会产生非线性失真呢?二者的主要区别在于B放大之后输出是一个大信号,用来驱动喇叭。而C放大之后输出依然是小信号,通常不会产生非线性的失真。2.非线性声学回声产生的原因.非线性声学回声产生的原因,我一共列了两条原因。原因之一,声学器件的小型化与廉价化,这里所指的声学器件就是前面B里面提到的功率放大器和喇叭。

     安徽识别声学回声识别

深圳鱼亮科技有限公司成立于2017-11-03,同时启动了以Bothlent为主的智能家居,语音识别算法,机器人交互系统,降噪产业布局。深圳鱼亮科技经营业绩遍布国内诸多地区地区,业务布局涵盖智能家居,语音识别算法,机器人交互系统,降噪等板块。我们强化内部资源整合与业务协同,致力于智能家居,语音识别算法,机器人交互系统,降噪等实现一体化,建立了成熟的智能家居,语音识别算法,机器人交互系统,降噪运营及风险管理体系,累积了丰富的通信产品行业管理经验,拥有一大批专业人才。深圳鱼亮科技有限公司业务范围涉及语音识别,音效算法,降噪算法,机器人,智能玩具,软件服务,教育培训,芯片开发,电脑,笔记本,手机,耳机,智能穿戴,进出口服务,云计算,计算机服务,软件开发,底层技术开发,软件服务进出口,品牌代理服务。等多个环节,在国内通信产品行业拥有综合优势。在智能家居,语音识别算法,机器人交互系统,降噪等领域完成了众多可靠项目。

信息来源于互联网 本站不为信息真实性负责