深圳智能音响声学回声祛混响算法

时间:2022年12月07日 来源:

    n)后,被麦克风采集到的信号,此时经过房间混响以及麦克风采集的信号y(n)已经不能等同于信号x(n)了,我们记线性叠加的部分为y'(n),非线性叠加的部分为y''(n),y(n)=y'(n)+y''(n);s(n):麦克风采集的近端说话人的语音信号,即我们真正想提取并发送到远端的信号;v(n):环境噪音,这部分信号会在ANS中被削弱;d(n):近端信号,即麦克风采集之后,3A之前的原始信号,可以表示为:d(n)=s(n)+y(n)+v(n);s'(n):3A之后的音频信号,即准备经过编码发送到对端的信号。WebRTC音频引擎能够拿到的已知信号只有近端信号d(n)和远端参考信号x(n)。如果信号经过A端音频引擎得到s'(n)信号中依然残留信号y(n),那么B端就能听到自己回声或残留的尾音(回声抑制不彻底留下的残留)。AEC效果评估在实际情况中可以粗略分为如下几种情况(专业人员可根据应用场景、设备以及单双讲进一步细分):回声消除的本质在解析WebRTCAEC架构之前,我们需要了解回声消除的本质是什么。音视频通话过程中,声音是传达信息的主要途径,因此从复杂的录音信号中,通过信号处理的手段使得我们要传递的信息:高保真、低延时、清晰可懂是一直以来追求的目标。在我看来,回声消除。

     搜索“声学回声消除”的相关文献。深圳智能音响声学回声祛混响算法

深圳智能音响声学回声祛混响算法,声学回声

    需要注意的是,如果index在滤波器阶数两端疯狂试探,只能说明当前给到线性部分的远近端延时较小或过大,此时滤波器效果是不稳定的,需要借助固定延时调整或大延时调整使index处于一个比较理想的位置。线性部分算法是可以看作是一个固定步长的NLMS算法,具体细节大家可以结合源码走读,本节重点讲解线型滤波在整个框架中的作用。从个人理解来看,线性部分的目的就是很大程度的消除线性回声,为远近端帧判别的时候,很大程度地保证了信号之间的相干值(0~1之间,值越大相干性越大)的可靠性。我们记消除线性回声之后的信号为估计的回声信号e(n),e(n)=s(n)+y''(n)+v(n),其中y''(n)为非线性回声信号,记y'(n)为线性回声,y(n)=y'(n)+y''(n)。相干性的计算(Matlab代码),两个实验(1)计算近端信号d(n)与远端参考信号x(n)的相关性cohdx,理论上远端回声信号的相干性应该更接近0(为了方便后续对比,WebRTC做了反向处理:1-cohdx),如图5(a),行为计算近端信号d(n),第二行为远端参考信号x(n),第三行为二者相干性曲线:1-cohdx,会发现回声部分相干值有明显起伏,比较大值有,近端部分整体接近,但是有持续波动,如果想通过一条固定的门限去区分远近端帧,会存在不同程度的误判。

     深圳智能音响声学回声祛混响算法先对非线性声学回声的特性进行分析。

深圳智能音响声学回声祛混响算法,声学回声

    随着秒新月异的科技发展,各项技术成果不断地应用在我们日益拓展的各领域需求当中,刷新着我们的生活和工作。地球村的崛起,不断以互联网、物联网等方式揭示着万物相连的关系。无论是飞机、高铁还是电话、网络,都成为托起地球新村时空纵横的重要载体。怎样拉近人与人之间的关系,如何建立起更行之有效的联络方式,提高远程协同工作、信息传达效率成为了一个重要命题。该图片源于网络远程会议的出现在很大程度上为这种多极化办公互动提供了质量的平台保障,在借助互联网便捷的远程通信架构下,通讯数据安全,稳定可靠,很长一段时间广受用户青睐。该图片源于网络然而美中不足的是,这样的(声音)系统仍逃不出的还是自然声学上的问题。有和业内朋友聊天中谈到,今后的扩声系统也许只保留两级传统装置了,那就是声电转换和电声转换的拾音和还原。而正是这两级客观存在的物理声学现象,造就了我们所讨论的内容。该图片源于网络在远程会议系统的终端(本地),为了实现多人互动、多人拾音等目的,系统声音免不了被放大还原,而在诸如此类的放大系统中,为本地音箱能够听到远端声音,并能把本地拾音信号传送到远端而互通。众所周知,话筒在拾取到放大后的音箱信号后。

 

    非线性声学回声消除技术,非线性的声学回声消除问题,在实际声学系统里面非常普遍也非常棘手,到目前为止还没有特别有效的办法来解决。目前介绍非线性声学回声消除的公开文献也少之又少。如何处理非线性声学回声消除的,效果又如何?将从非线性声学回声消除产生的原因、研究现状、技术难点出发,详细介绍双耦合的声学回声消除算法以及实验检验结果。我要讲的内容是《非线性声学回声消除技术》,之所以选择这样的方向,主要是基于两个方面的原因:非线性的声学回声消除问题是一个困扰了行业很多年的技术难题,这个问题在实际的声学系统里非常普遍,同时又很棘手,到目前为止,还没有特别有效的办法。我猜测大家应该会对这个课题感兴趣。还有另外一个原因,我之前做过一些技术的调研,在现有公开的文献资料里,介绍非线性声学回声消除方面的资料非常少,我想借这样一个机会,介绍一些我们团队在这个领域的进展,希望能够对大家后续的研究有一些帮助,同时也想跟各位**做一下技术交流。我介绍的内容包括四个部分,个部分什么是非线性声学回声,它产生的原理、研究现状以及技术难点等问题;第二个部分重点介绍双耦合声学回声消除算法。

    非线性的声学回声消除问题。

深圳智能音响声学回声祛混响算法,声学回声

    非线性声学回声产生的原因非线性声学回声产生的原因,我一共列了两条原因。原因之一,声学器件的小型化与廉价化,这里所指的声学器件就是前面B里面提到的功率放大器和喇叭。为什么声学器件的小型化容易产生非线性的失真呢?这个需要从喇叭发声的基本原理说起,我们都知道声波的本质是一种物理振动,而喇叭发声的基本原理就是通过电流来驱动喇叭的振膜发生振动之后,这个振膜会带动周围的空气分子相应发生振动,这样就产生了声音。如果我们要发出一个大的声音的话,那么就需要在单位时间内用更多的电流去驱动更多的空气分子发生振动。假设有大小不同的两个喇叭,他们用同样的功率去驱动,对于大喇叭而言,由于它跟空气接触的面积要大一些,所以他在单位时间内能够带动更多的空气分子振动,所以它发出来的声音也会大一些。而小喇叭如果想发出跟大喇叭一样大的声音,就需要加大驱动功率,这样会带来一个问题:我们的功率放大器件会进入到一种饱和失真的状态,由此就会带来非线性的失真。这就是声学器件小型化容易产生非线性失真的一个主要的原因。这里廉价化比较好理解了,就不多说了。原因之二。就是声学结构设计的不合理。典型的一个实例就是声学系统的隔振设计不合理。

     搜索“声学回声消除”的相关文献,一共找到了3402篇。安徽声学回声跟读

我们把声学回声消除这个技术变成一张实体的插件(设备插卡)。深圳智能音响声学回声祛混响算法

    3.双耦合滤波器设计当滤波器的结构确定下来之后,我们要去设计滤波器系数了。设计过程我把它总结成了三步,第一步就是构建优化准则,第二步是求解滤波器的权系数——Wl和Wn,一步就是构建耦合机制。第一步就是构建优化准则。我觉得构建优化准则,应该是整个滤波器设计里面重要的一步,因为它决定了滤波器性能的上限。什么样的优化准则是一个好的优化准则呢?我觉得好的优化准则需要跟问题的物理特性有效匹配起来,所以在构建优化准则之前,我们先对非线性声学回声的特性进行分析,希望通过这种分析去挖掘非线性声学回声的一些物理特性。我们的分析是基于上面的函数,我们称它为短时相关度,它所表示的是两个信号,在一个短时的观测时间窗“T”这样一个尺度范围内的波形的相似程度,需要注意的是这个函数它是统计意义上的,因为我们对它进行了数学期望运算。同时在分子的一项我们还加了一个相位校正因子,目的是为了将这两路信号的初始相位对齐。基于前面构建的短时相关度函数,我们对大量声学回声数据进行分析,并挑选了几组比较典型的数据:绿色的曲线对应的是一组线性度非常好的回声数据。我们从这个数据上可以看到,在整个时间T的变化范围内,它的短时相关度都非常高。

     深圳智能音响声学回声祛混响算法

深圳鱼亮科技有限公司是以智能家居,语音识别算法,机器人交互系统,降噪研发、生产、销售、服务为一体的语音识别,音效算法,降噪算法,机器人,智能玩具,软件服务,教育培训,芯片开发,电脑,笔记本,手机,耳机,智能穿戴,进出口服务,云计算,计算机服务,软件开发,底层技术开发,软件服务进出口,品牌代理服务。企业,公司成立于2017-11-03,地址在龙华街道清华社区建设东路青年创业园B栋3层12号。至创始至今,公司已经颇有规模。公司主要经营智能家居,语音识别算法,机器人交互系统,降噪等,我们始终坚持以可靠的产品质量,良好的服务理念,优惠的服务价格诚信和让利于客户,坚持用自己的服务去打动客户。Bothlent以符合行业标准的产品质量为目标,并始终如一地坚守这一原则,正是这种高标准的自我要求,产品获得市场及消费者的高度认可。深圳鱼亮科技有限公司本着先做人,后做事,诚信为本的态度,立志于为客户提供智能家居,语音识别算法,机器人交互系统,降噪行业解决方案,节省客户成本。欢迎新老客户来电咨询。

信息来源于互联网 本站不为信息真实性负责