规格书WILLSEMI韦尔SPD82242B

时间:2024年03月23日 来源:

    ESD5311X是一款极低电容的瞬态电压抑制器(TVS),专为保护高速数据接口而设计。它特别用于保护连接到数据和传输线的敏感电子组件,免受由静电放电(ESD)引起的过应力影响。ESD5311X包含一个极低电容的转向二极管对和一个TVS二极管。根据IEC61000-4-2标准,ESD5311X可提供高达±20kV(接触放电)的ESD保护,并根据IEC61000-4-5标准,能承受高达4A(8/20μs)的峰值脉冲电流。ESD5311X采用WBFBP-02C-C封装,为标准无铅且无卤素产品。

主要特性:

截止电压:5V

根据IEC61000-4-2(ESD)的每条线瞬态保护:±20kV(接触放电)

根据IEC61000-4-5(浪涌)的瞬态保护:4A(8/20μs)

极低电容:CJ=0.25pF(典型值)

极低漏电流:IR<1nA(典型值)

低钳位电压:VCL=22V(典型值)@IPP=16A(TLP)

固态硅技术

应用领域:

USB2.0和USB3.0

HDMI1.3和HDMI1.4

SATA和eSATA

DVI

IEEE 1394

PCI Express

便携式电子设备

笔记本电脑

    ESD5311X是一款专为高速数据接口设计的瞬态电压抑制器,可承受高达±20kV的静电放电和4A的峰值脉冲电流,保护电子组件免受损害。适用于USB、HDMI、SATA等接口,确保数据传输的稳定性。紧凑、环保,广泛应用于便携式设备和笔记本电脑。如需更多信息,请查阅手册或联系我们。 WPM2019-3/TR 场效应管(MOSFET) 封装:SOT-523-3。规格书WILLSEMI韦尔SPD82242B

规格书WILLSEMI韦尔SPD82242B,WILLSEMI韦尔

     WNM6002是一种N型增强型MOS场效应晶体管,利用先进的沟槽和电荷控制设计,提供出色的RDS(ON)和低栅极电荷。这款器件适用于电源开关、负载开关和充电电路。标准产品WNM6002为无铅且不含卤素。小型SOT-323封装。

主要特性:

· 沟槽技术

· 超高密度单元设计

· 适用于高直流电流的优异导通电阻

· 极低的阈值电压

应用领域:

· 继电器、电磁铁、电机、LED等的驱动

· DC-DC转换器电路

· 电源开关

· 负载开关

· 充电电路

    WNM6002N型增强型MOS场效应晶体管是一种高性能、高效能的半导体器件,专为现代电子设备中的电源管理和开关应用而设计。其采用先进的沟槽技术和电荷控制设计,确保了出色的RDS(ON)和低栅极电荷,从而提供了高效的电流控制和低功耗操作。WNM6002的超高密度单元设计使其在高直流电流下仍能保持优异的导通电阻,确保了高效的能量转换和散热。同时,极低的阈值电压保证了快速的开关响应和稳定的性能。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 中文资料WILLSEMI韦尔WNM03136EWNMD2171-4/TR 场效应管(MOSFET) 封装:CSP-4L。

规格书WILLSEMI韦尔SPD82242B,WILLSEMI韦尔

    WS4665是一个单通道负载开关,提供可配置的上升时间以极小化涌流。该设备包含一个N型MOSFET,可以在0.8V至5.5V的输入电压范围内工作,并支持连续电流上线为6A。开关由开/关输入(ON)控制,该输入能够直接与低电压控制信号接口。在WS4665中,增加了一个230Ω的片上负载电阻,用于在开关关闭时进行快速输出放电。WS4665采用小型、节省空间的2.00mmx2.00mm8引脚DFN封装。标准产品为无铅且无卤素。

主要特性:

· 集成单通道负载开关

· 输入电压范围:0.8V至5.5V

· 极低导通电阻(RON)RON=14mΩatVIN=5V(VBIAS=5V)

· 连续开关上限电流为6A

· 低控制输入阈值,支持1.2V、1.8V、2.5V和3.3V逻辑

· 可配置的上升时间

· 快速输出放电(QOD)

· ESD性能经过JESD22测试2000VHBM和1000VCDM


应用领域:

· 超极本TM

· 笔记本电脑/上网本

· 平板电脑

· 消费电子产品

· 机顶盒/住宅网关

· 电信系统

    WS4665适用于多种应用场合,如超极本、笔记本电脑/上网本、平板电脑、消费电子产品、机顶盒/住宅网关以及电信系统等。如需更多信息或技术规格,请查阅相关数据手册或与我们联系。

     ESD9X5VL是一款单向瞬态电压抑制器(TVS),为可能遭受静电放电(ESD)的敏感电子元件提供极高水平的保护。它被设计用于替代消费设备中的多层变阻器(MLV),适用于手机、笔记本电脑、平板电脑、机顶盒、液晶电视等设备。ESD9X5VL结合了一对极低电容转向二极管和一个TVS二极管。根据IEC61000-4-2标准,它可用于提供高达±20kV(接触和空气放电)的ESD保护,并根据IEC61000-4-5标准承受8/20μs脉冲的峰值电流高达4A。ESD9X5VL采用FBP-02C封装,标准产品为无铅、无卤素。

特性:

· 截止电压:5V

· 根据IEC61000-4-2(ESD)为每条线路提供瞬态保护:±20kV(接触和空气放电)

· IEC61000-4-4(EFT):40A(5/50ns)

· IEC61000-4-5(浪涌):4A(8/20μs)

· 极低电容:CJ=1.2pF(典型值)

· 极低漏电流:IR<1nA(典型值)

· 低箝位电压:VCL=18V(典型值)@IPP=16A(TLP)

· 固态硅技术

应用:

· USB2.0和USB3.0

· HDMI1.3和HDMI1.4

· SATA和eSATA

· DVI

· IEEE 1394

· PCI Express

· 便携式电子产品

· 笔记本电脑

    ESD9X5VL是保护高速数据接口免受静电放电损害的瞬态电压抑制器。响应迅速,避免噪声和干扰,高可靠且适用于便携式设备。详情查阅手册或联系我们。 WNM3013-3/TR 场效应管(MOSFET) 封装:SOT-723。

规格书WILLSEMI韦尔SPD82242B,WILLSEMI韦尔

    WD3168:5V/300mA开关电容电压转换器,它能够从一个非稳压输入电压中产生一个稳定、低噪声、低纹波的5V输出电压。即使在VIN大于5V的情况下,它也能维持5V的稳压输出。它能够以小巧的封装提供≧300mA的电流。当负载电流在典型条件下低于4mA时,WD3168会进入跳模模式,此时其静态电流会降低到170uA。只需3个外部电容器即可产生输出电压,从而节省PCB空间。

    此外,其软启动功能在开机和电源瞬态状态下会限制涌入电流。WD3168内置了电流限制保护功能,适合HDMI、USBOTG和其他电池供电的应用。SOT-23-6L封装,并在-40℃至+85℃的环境温度范围内工作。

   其主要特性包括:

1、 输出电流为300mA

2、宽输入电压范围:2.7V至5.5V

3、固定输出电压为5.0V

4、双倍电荷泵

5、较小外部元件:无需电感器

6、高频操作:1.7MHz

7、自动软启动限制涌入电流

8、低纹波和EMI

9、过热和过流保护

10、无负载条件下典型静态电流为170uA(跳模模式)

   其应用领域包括:

1、3V至5V的升压转换

2、USBOn-The-Go或HDMI5V供电

3、从较低轨道提供的本地5V供电

4、电池备份系统

5、手持便携式设备

    WD3168是一种效率高、可靠的电源IC,适用于各种需要5V稳定输出的应用场景。如需更详细的信息或产品规格书请联系我们。 ESD54151N-2/TR 静电和浪涌保护(TVS/ESD)封装:DFN1006。规格书WILLSEMI韦尔WNM3013A

WS72358D-8/TR 运算放大器 封装:DFN-8-EP(2x2)。规格书WILLSEMI韦尔SPD82242B

WAS4729QB:低导通电阻(0.8Ω)双SPDT模拟开关,具有负摆幅音频功能

产品描述:

    WAS4729QB是一款高性能的双单极双掷(SPDT)模拟开关,具有负摆幅音频功能,其典型导通电阻Ron为0.8Ω(在3.6VVCC下)。该开关在2.3V至5.5V的宽VCC范围内工作,并设计为先断后通的操作模式。选择输入与TTL电平兼容。WAS4729QB还配备了智能电路,即使在控制电压低于VCC电源电压时,也能小化VCC泄漏电流。这一特性非常适合移动手机应用,因为它允许直接与基带处理器的通用I/O接口,同时极大限度地减少电池消耗。换句话说,在实际应用中,无需额外的设备来将控制电平调整到与VCC相同。WAS4729QB采用QFN1418-10L封装。标准产品为无铅且无卤素。

产品特性

供电电压:2.3V~5.5V

极低导通电阻:0.8Ω(在3.6V下)

高关断隔离度:-81dB@1KHz

串扰抑制:-83dB@1KHz-3dB带宽:80MHz

轨到轨信号范围

先断后通开关

HBM JEDEC:JESD22-A114IO至GND:±8KV

电源至GND:±5KV

应用领域

手机、PDA、数码相机和笔记本电脑

LCD显示器、电视和机顶盒

音频和视频信号路由

     WAS4729QB是高性能模拟开关,专为移动设备设计,适合音频和视频信号路由,性能优越可靠。详情请查阅数据手册或联系我们。 规格书WILLSEMI韦尔SPD82242B

信息来源于互联网 本站不为信息真实性负责